A Contraction Argument for Two-Dimensional Spiking Neuron Models
نویسندگان
چکیده
منابع مشابه
A Contraction Argument for Two-Dimensional Spiking Neuron Models
A number of two-dimensional spiking neuron models that combine continuous dynamics with an instantaneous reset have been introduced in the literature. The models are capable of reproducing a variety of experimentally observed spiking patterns, and also have the advantage of being mathematically tractable. Here an analysis of the transverse stability of orbits in the phase plane leads to suffici...
متن کاملRomain Brette Dynamics of one - dimensional spiking neuron models
In this paper we make a rigorous mathematical analysis of one-dimensional spiking neuron models in a unified framework. We find that, under conditions satisfied in particular by the periodically and aperiodically driven leaky integrator as well as some of its variants, the spike map is increasing on its range, which leaves no room for chaotic behavior. A rigorous expression of the Lyapunov expo...
متن کاملNeuron Modulation: A Digital Modulation Based on Spiking Neuron Models
In this paper, a novel digital modulation technique based on spiking neuron models is proposed. Thanks to the extremely simple and low-power spiking neuron circuits, this modulation scheme allows a less complex receiver at the cost of a more complicated transmitter. Accordingly, it is a good candidate for downlink transmission. Since the transmitted signal is generated based on Shannon’s interp...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولBayesian Inference for Spiking Neuron Models with a Sparsity Prior
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full posterior distribution over all weights. In addition, we use a Laplacian prior to favor sparse solutions. Therefore, stimulus features that do not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Dynamical Systems
سال: 2012
ISSN: 1536-0040
DOI: 10.1137/10081811x